Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 905: 167381, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37769738

RESUMO

Rapidly increasing temperatures in high-latitude regions are causing major changes in wetland ecosystems. To assess the impact of concomitant hydroclimatic fluctuations, mineral deposition, and autogenous succession on the rate and direction of changing arctic plant communities in Arctic Alaska, we conducted detailed palaeoecological analyses using plant macrofossil, pollen, testate amoebae, elemental analyses, and radiocarbon and lead (210Pb) dating on two replicate monoliths from a peatland that developed in a river valley on the northern foothills of the Books Range. We observed an expansion of Sphagnum populations and vascular plants preferring dry habitats, such as Sphagnum warnstorfii, Sphagnum teres/squarrosum, Polytrichum strictum, Aulacomnium palustre and Salix sp., in recent decades between 2000 and 2015 CE, triggered by an increase in temperature and deepening water tables. Deepening peatland water tables became accentuated over the last two decades, when it reached its lowest point in the last 700 years. Conversely, a higher water-table between ca. 1500 and 1950 CE led to a recession of Sphagnum communities and an expansion of sedges. The almost continuous supply of mineral matter during this time led to a dominance of minerotrophic plant communities, although with varying species composition throughout the study period. The replicate cores show similar patterns, but nuanced differences are also visible, depicting fine spatial scale differences particularly in peat-forming plant distribution and the different timings of their presence. In conclusion, our study provides valuable insights into the impact of hydroclimatic fluctuations on peatland vegetation in Arctic Alaska, highlighting their tendency to dry out in recent decades. It also highlights the importance of river valley peatlands in paleoenvironmental reconstructions.


Assuntos
Ecossistema , Sphagnopsida , Áreas Alagadas , Meio Ambiente , Solo , Plantas , Minerais
2.
Sci Total Environ ; 838(Pt 1): 155660, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35526637

RESUMO

Fires are natural phenomena that impact human behaviors, vegetation, and landscape functions. However, the long-term history of fire, especially in the permafrost marginal zone of Central Asia (Mongolia), is poorly understood. This paper presents the results of radiocarbon and short-lived radionuclides (210Pb and 137Cs) dating, pollen, geochemical, charcoal, and statistical analyses (Kohonen's artificial neural network) of sediment core obtained from Northern Mongolia (the Khentii Mountains region). Therefore, we present the first high-resolution fire history from Northern Mongolia covering the last 1000 years, based on a multiproxy analysis of peat archive data. The results revealed that most of the fires in the region were likely initiated by natural factors, which were probably related to heatwaves causing prolonged droughts. We have demonstrated the link between enhanced fires and "dzud", a local climatic phenomenon. The number of livestock, which has been increasing for several decades, and the observed climatic changes are superimposed to cause "dzud", a deadly combination of droughts and snowy winter, which affects fire intensity. We observed that the study area has a sensitive ecosystem that reacts quickly to climate change. In terms of changes in the vegetation, the reconstruction reflected climate variations during the last millennium, the degradation of permafrost and occurrence of fires. However, more sites with good chronologies are needed to thoroughly understand the spatial relationships between changing climate, permafrost degradation, and vegetation change, which ultimately affect the nomadic societies in the region of Central and Northern Mongolia.


Assuntos
Ecossistema , Incêndios , Sedimentos Geológicos/análise , Humanos , Mongólia , Árvores
3.
Sci Rep ; 11(1): 20876, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34686702

RESUMO

Connecting pathways are essential for cultural and economic exchange. Commonly, historians investigate the role of routes for cultural development, whereas the environmental impacts of historical routes attract less attention. Here, we present a high-resolution reconstruction of the impact of the major trade route via Marchionis in the southern Baltic lowlands on landscape evolution since more than 800 years. We combine precisely dated annually laminated sediments from Lake Czechowskie alongside via Marchionis and pollen data at 5-year resolution together with historical data. The transformation from a quasi-natural to a cultural landscape occurred in three phases (1) an early phase until the mid-fourteenth century with slowly increasing human impact. (2) an intensification of environmental disturbance until (3) the mid-nineteenth century when via Marchionis became a modern traffic route with strong environmental impacts. Superimposed on the long-term development were repeated interruptions by short-term downturns related to societal crisis and political decisions.

4.
PLoS One ; 14(9): e0222011, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31525210

RESUMO

Fire regime shifts are driven by climate and natural vegetation changes, but can be strongly affected by human land management. Yet, it is poorly known how humans have influenced fire regimes prior to active wildfire suppression. Among the last 250 years, the human contribution to the global increase in fire occurrence during the mid-19th century is especially unclear, as data sources are limited. Here, we test the extent to which forest management has driven fire regime shifts in a temperate forest landscape. We combine multiple fire proxies (macroscopic charcoal and fire-related biomarkers) derived from highly resolved lake sediments (i.e., 3-5 years per sample), and apply a new statistical approach to classify source area- and temperature-specific fire regimes (biomass burnt, fire episodes). We compare these records with independent climate and vegetation reconstructions. We find two prominent fire regime shifts during the 19th and 20th centuries, driven by an adaptive socio-ecological cycle in human forest management. Although individual fire episodes were triggered mainly by arson (as described in historical documents) during dry summers, the biomass burnt increased unintentionally during the mid-19th century due to the plantation of flammable, fast-growing pine tree monocultures needed for industrialization. State forest management reacted with active fire management and suppression during the 20th century. However, pine cover has been increasing since the 1990s and climate projections predict increasingly dry conditions, suggesting a renewed need for adaptations to reduce the increasing fire risk.


Assuntos
Incêndios , Agricultura Florestal/métodos , Florestas , Sedimentos Geológicos/química , Desenvolvimento Industrial , Carvão Vegetal/análise , Lagos/química , Polônia
5.
J Environ Manage ; 236: 755-768, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30776550

RESUMO

In recent decades, it has been observed that most forest fires in Europe were caused by people. Extreme droughts, which are more often prolonged, can increase the risk of forest fires, not only in southern Europe but also, in Central Europe. Nonetheless, catastrophic fire events are not well recognized in the Central European Lowlands (CEL), where large forest complexes are located. Knowledge of past fire activity in this part of Europe is scarce, although several fires have occurred in this area during the previous millennia. Large coniferous forest monocultures located in the CEL are highly susceptible to fires and other disturbances. Here, we present a case study from the Tuchola Pinewoods (TP; northern Poland), where large pine monocultures are present. The main aim of this study is to document the potential effects past land management has on modern day disturbance regimes using state-of-the-art paleoecological data, historical documents and cartographic materials. We then present a protocol that will help forest managers utilize long-term paleoecological records. Based on paleoecological investigations, historical documents, and cartographic materials, our results show that, in the past 300 years, the TP witnessed not only disastrous fires and but also windfalls by tornados and insect outbreaks. A change in management from Polish to Prussian/German in the 18th century led to the transformation of mixed forests into Scots pine monocultures with the purpose to allow better economic use of the forest. Those administrative decisions led to an ecosystem highly susceptible to disturbances. This article provides a critical review of past forest management as well as future research directions related to the impacts of fire risk on land management and ecosystem services: (a) habitat composition and structure (biodiversity); (b) natural water management; and (c) mitigation of climate changes. Designated forest conditions, management, and future fire risk are a controversial and highly debated topic of forest management by Forestry Units. More research will allow the gathering of reliable information pertinent to management practices with regard to the current fire risks. It is necessary to develop a dialog between scientists and managers to reduce the risk of fires in projected climate change.


Assuntos
Ecossistema , Incêndios , Europa (Continente) , Florestas , Polônia , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...